printf("ho_tari\n");

2일차 본문

2025.03.26

 

오늘의 학습 목표

1. 과제 review

2. LED/BUTTON Control

3. HAL function → Direct MemoryAccess 변환

4. Debugger 사용법

5. ST_LINK Utility

 

DMA_RISC_CISC_WatchDog_AHB_APB_박성호.pdf
1.30MB

 

데이터시트

 

LED CONTROL

 

<main.c>

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "extern.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART2_UART_Init();
  /* USER CODE BEGIN 2 */
  led_main();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
//	  HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
//	  HAL_Delay(500);
	  HAL_GPIO_WritePin(GPIOB, 0xff, 1);
	  HAL_Delay(500);
	  HAL_GPIO_WritePin(GPIOB, 0xff, 0);
	  HAL_Delay(500);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 16;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3
                          |GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_RESET);

  /*Configure GPIO pin : B1_Pin */
  GPIO_InitStruct.Pin = B1_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pin : LD2_Pin */
  GPIO_InitStruct.Pin = LD2_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pins : PB0 PB1 PB2 PB3
                           PB4 PB5 PB6 PB7 */
  GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3
                          |GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

 

<led.c>

#include "led.h"

void led_main(void)
{
	while(1)
	{
//		led_all_on();
//		HAL_Delay(50);
//		led_all_off();
//		HAL_Delay(50);

		shift_left_led_on();
		shift_right_led_on();
		shift_left_keep_ledon();
		shift_right_keep_ledon();
		flower_on();
		flower_off();
	}
}

void led_all_on(void)
{
//	HAL_GPIO_WritePin(GPIOB, 0xff, 1);
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 |
			GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7, 1);
}

void led_all_off(void)
{
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 |
				GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7, 0);
}

void shift_left_led_on(void)
{
	uint16_t ledpins[8] = {
			GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3,
			GPIO_PIN_4, GPIO_PIN_5, GPIO_PIN_6, GPIO_PIN_7
	};

	for(int i = 0; i < 8; i++)
	{
		HAL_GPIO_WritePin(GPIOB, ledpins[i], 1);
		HAL_Delay(100);
		led_all_off();
	}
	HAL_Delay(100);
}

void shift_right_led_on(void)
{
	uint16_t ledpins[8] = {
			GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3,
			GPIO_PIN_4, GPIO_PIN_5, GPIO_PIN_6, GPIO_PIN_7
	};

	for(int i = 7; i >= 0; i--)
	{
		HAL_GPIO_WritePin(GPIOB, ledpins[i], 1);
		HAL_Delay(100);
		led_all_off();
	}
	HAL_Delay(100);
}

void shift_left_keep_ledon(void)
{
	uint16_t ledpins[8] = {
			GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3,
			GPIO_PIN_4, GPIO_PIN_5, GPIO_PIN_6, GPIO_PIN_7
	};

	for(int i = 0; i < 8; i++)
	{
		HAL_GPIO_WritePin(GPIOB, ledpins[i], 1);
		HAL_Delay(100);
	}
	led_all_off();
	HAL_Delay(100);
}

void shift_right_keep_ledon(void)
{
	uint16_t ledpins[8] = {
			GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3,
			GPIO_PIN_4, GPIO_PIN_5, GPIO_PIN_6, GPIO_PIN_7
	};

	for(int i = 7; i >= 0; i--)
	{
		HAL_GPIO_WritePin(GPIOB, ledpins[i], 1);
		HAL_Delay(100);
	}
	led_all_off();
	HAL_Delay(100);
}

void flower_on(void)
{
	uint16_t ledpins[8] = {
			GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3,
			GPIO_PIN_4, GPIO_PIN_5, GPIO_PIN_6, GPIO_PIN_7
	};

	for(int i = 4; i >= 0; i--)
	{
		HAL_GPIO_WritePin(GPIOB, ledpins[i] | ledpins[7 - i], 1);
		HAL_Delay(150);
	}
	led_all_off();
	HAL_Delay(100);
}

void flower_off(void)
{
	uint16_t ledpins[8] = {
			GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3,
			GPIO_PIN_4, GPIO_PIN_5, GPIO_PIN_6, GPIO_PIN_7
	};

	led_all_on();
	HAL_Delay(100);

	for(int i = 0; i < 4; i++)
	{
		HAL_GPIO_WritePin(GPIOB, ledpins[i] | ledpins[7 - i], 0);
		HAL_Delay(150);
	}

	HAL_Delay(100);
}

 

<실행 결과>

https://youtube.com/shorts/QXG3OIcTGuA

 

주소값 사용

<led.c>

void led_all_on(void)
{
#if 1
	// printf("int %d\n", sizeof(int)); // 4로 찍히는지 확인
	*(unsigned int *)0x40020414 = 0xff;
#else // original
//	HAL_GPIO_WritePin(GPIOB, 0xff, 1);
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 |
			GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7, 1);
#endif
}

void led_all_off(void)
{
#if 1
	// printf("int %d\n", sizeof(int)); // 4로 찍히는지 확인
	*(unsigned int *)0x40020414 = 0x00;
#else
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 |
			GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7, 0);
#endif
}

 

 

LED CONTROL with DMA

 

<led.c>

#include "led.h"

void led_main(void)
{
	while(1)
	{
		led_all_on();
		HAL_Delay(500);
		led_all_off();
		HAL_Delay(500);

		shift_left_led_on();
		shift_right_led_on();
		shift_left_keep_ledon();
		shift_right_keep_ledon();
		flower_on();
		flower_off();
	}
}

void led_all_on(void)
{
#if 1
	// printf("int %d\n", sizeof(int)); // 4로 찍히는지 확인
	*(unsigned int *)GPIOB_ODR = 0xff;
#else // original
//	HAL_GPIO_WritePin(GPIOB, 0xff, 1);
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 |
			GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7, 1);
#endif
}

void led_all_off(void)
{
#if 1
	// printf("int %d\n", sizeof(int)); // 4로 찍히는지 확인
	*(unsigned int *)GPIOB_ODR = 0x00;
#else
	HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 |
			GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7, 0);
#endif
}

void shift_left_led_on(void)
{
#if 1
	for(int i = 0; i < 8; i++)
	{
		*(unsigned int*)GPIOB_ODR = 0x01 << i;
		HAL_Delay(100);
		led_all_off();
	}
	HAL_Delay(100);
#else
	uint16_t ledpins[8] = {
			GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3,
			GPIO_PIN_4, GPIO_PIN_5, GPIO_PIN_6, GPIO_PIN_7
	};

	for(int i = 0; i < 8; i++)
	{
		HAL_GPIO_WritePin(GPIOB, ledpins[i], 1);
		HAL_Delay(100);
		led_all_off();
	}
	HAL_Delay(100);
#endif
}

void shift_right_led_on(void)
{
#if 1
	for(int i = 0; i < 8; i++)
	{
		*(unsigned int*)GPIOB_ODR = 0x80 >> i;
		HAL_Delay(100);
		led_all_off();
	}
	HAL_Delay(100);
#else
	uint16_t ledpins[8] = {
			GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3,
			GPIO_PIN_4, GPIO_PIN_5, GPIO_PIN_6, GPIO_PIN_7
	};

	for(int i = 7; i >= 0; i--)
	{
		HAL_GPIO_WritePin(GPIOB, ledpins[i], 1);
		HAL_Delay(100);
		led_all_off();
	}
	HAL_Delay(100);
#endif
}

void shift_left_keep_ledon(void)
{
#if 1
	for(int i = 0; i < 8; i++)
	{
		*(unsigned int*)GPIOB_ODR |= 0x01 << i;
		HAL_Delay(100);
	}
	led_all_off();
	HAL_Delay(100);
#else
	uint16_t ledpins[8] = {
			GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3,
			GPIO_PIN_4, GPIO_PIN_5, GPIO_PIN_6, GPIO_PIN_7
	};

	for(int i = 0; i < 8; i++)
	{
		HAL_GPIO_WritePin(GPIOB, ledpins[i], 1);
		HAL_Delay(100);
	}
	led_all_off();
	HAL_Delay(100);
#endif
}

void shift_right_keep_ledon(void)
{
#if 1
	for(int i = 0; i < 8; i++)
	{
		*(unsigned int*)GPIOB_ODR |= 0x80 >> i;
		HAL_Delay(100);
	}
	led_all_off();
	HAL_Delay(100);
#else
	uint16_t ledpins[8] = {
			GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3,
			GPIO_PIN_4, GPIO_PIN_5, GPIO_PIN_6, GPIO_PIN_7
	};

	for(int i = 7; i >= 0; i--)
	{
		HAL_GPIO_WritePin(GPIOB, ledpins[i], 1);
		HAL_Delay(100);
	}
	led_all_off();
	HAL_Delay(100);
#endif
}

void flower_on(void)
{
#if 1
	for(int i = 0; i < 4; i++)
	{
		*(unsigned int*)GPIOB_ODR |= 0x10 << i | 0x08 >> i;
		HAL_Delay(150);
	}
	led_all_off();
	HAL_Delay(100);
#else
	uint16_t ledpins[8] = {
			GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3,
			GPIO_PIN_4, GPIO_PIN_5, GPIO_PIN_6, GPIO_PIN_7
	};

	for(int i = 4; i >= 0; i--)
	{
		HAL_GPIO_WritePin(GPIOB, ledpins[i] | ledpins[7 - i], 1);
		HAL_Delay(150);
	}
	led_all_off();
	HAL_Delay(100);
#endif
}

void flower_off(void)
{
#if 1
	led_all_on();
	HAL_Delay(100);
	for(int i = 4; i >= 0; i--)
	{
		*(unsigned int*)GPIOB_ODR &= ~(0x10 << i | 0x08 >> i);
		HAL_Delay(150);
	}
	led_all_off();
	HAL_Delay(100);
#else
	uint16_t ledpins[8] = {
			GPIO_PIN_0, GPIO_PIN_1, GPIO_PIN_2, GPIO_PIN_3,
			GPIO_PIN_4, GPIO_PIN_5, GPIO_PIN_6, GPIO_PIN_7
	};

	led_all_on();
	HAL_Delay(100);

	for(int i = 0; i < 4; i++)
	{
		HAL_GPIO_WritePin(GPIOB, ledpins[i] | ledpins[7 - i], 0);
		HAL_Delay(150);
	}

	HAL_Delay(100);
#endif
}

 

<실행 결과>

https://youtube.com/shorts/Nd3inZdC3Wk

 

BUTTON TOGGLE with DMA (PUPDR)

 

<button.c>

/*
 * button.c
 *
 *  Created on: Mar 26, 2025
 *      Author: microsoft
 */


#include "button.h"

void button_led_toggle_test(void);
int get_button(GPIO_TypeDef *GPIO, int GPIO_Pin, int button_num);

void button_led_toggle_test(void)
{
	*(unsigned int *)GPIOC_PUPDR |= 0b01010101 | 0b01 << 26;

	// 버튼을 한 번 눌렀다 떼면 led가 toggle되도록 code 구현
	if(get_button(GPIOC, GPIO_PIN_0, BTN0) == BUTTON_PRESS)
	{
		HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_0);
	}
	if(get_button(GPIOC, GPIO_PIN_1, BTN1) == BUTTON_PRESS)
	{
		HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_1);
	}
	if(get_button(GPIOC, GPIO_PIN_2, BTN2) == BUTTON_PRESS)
	{
		HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_2);
	}
	if(get_button(GPIOC, GPIO_PIN_3, BTN3) == BUTTON_PRESS)
	{
		HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_3);
	}
	if(get_button(GPIOC, GPIO_PIN_13, BTN4) == BUTTON_PRESS) // demo'bd
	{
		HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);
	}
}

int get_button(GPIO_TypeDef *GPIO, int GPIO_Pin, int button_num)
{
	static unsigned char button_status[BUTTON_NUMBER] =
	{BUTTON_RELEASE,BUTTON_RELEASE,BUTTON_RELEASE,BUTTON_RELEASE, BUTTON_RELEASE};
	// 	지역 변수에 static을 쓰면 전역 변수처럼 함수를 빠져 나갔다 다시 들어 와도 값을 유지 한다.
	int current_state;

	// currtn_state = HAL_GPIO_ReadPin(GPIO, GPIO_Pin);   // 버튼을 읽는다.
	current_state = *(unsigned int*)GPIOC_IDR;

	if (!(current_state & GPIO_Pin) && button_status[button_num] == BUTTON_RELEASE)  // 버튼이 처음 눌려진 noise high
	{
		HAL_Delay(60);   // noise가 지나가기를 기다린다.
		button_status[button_num] = BUTTON_PRESS;   // noise가 지나간 상태의 High 상태
		return BUTTON_RELEASE;   // 아직은 완전히 눌렸다 떼어진 상태가 아니다.
	}
	else if ((current_state & GPIO_Pin) && button_status[button_num] == BUTTON_PRESS)
	{
		HAL_Delay(60);
		button_status[button_num] = BUTTON_RELEASE;   // 다음 버튼 체크를 위해서 초기화
		return BUTTON_PRESS;   // 완전히 1번 눌렸다 떼어진 상태로 인정
	}

	return BUTTON_RELEASE;   // 버튼이 open상태
}

 

<button.h>

/*
 * button.h
 *
 *  Created on: Mar 26, 2025
 *      Author: microsoft
 */

#ifndef INC_BUTTON_H_
#define INC_BUTTON_H_

#include "main.h"

#define GPIOC_IDR 0x40020810
#define GPIOC_PUPDR 0x4002080C

#define BTN0 0 // PC0
#define BTN1 1 // PC1
#define BTN2 2 // PC2
#define BTN3 3 // PC3
#define BTN4 4 // PC13 demo'bd

#define BUTTON_NUMBER 5

#define BUTTON_PRESS 0 // active low
#define BUTTON_RELEASE 1 // button을 뗀 상태

#endif /* INC_BUTTON_H_ */

 

<실행 결과>

https://youtube.com/shorts/9W21vMC4UKQ

 

'(Telechips) AI 시스템 반도체 SW 개발자 교육 > STM32CubeIDE' 카테고리의 다른 글

6일차  (0) 2025.04.01
5일차  (0) 2025.03.31
4일차  (0) 2025.03.28
3일차  (0) 2025.03.27
1일차  (0) 2025.03.25